
On the Black Art of
Designing Computational Workflows

Yolanda Gil
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey CA 90292
+1 310 822 1511

gil@isi.edu

Pedro A. González-Calero
Facultad de Informática

Universidad Complutense de Madrid
 28040 Madrid, Spain

+34 91 394 7517

pedro@sip.ucm.es

Ewa Deelman
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey CA 90292
+1 310 822 1511

deelman@isi.edu

ABSTRACT
Computational workflows have recently emerged as an effective
paradigm to manage large-scale distributed scientific
computations. Workflow systems can automate many execution-
level details and provide assistance in composing and validating
workflows. However, there is still a significant effort involved in
creating these workflows since they often represent collaborative
and exploratory science experiments. Therefore, current practice
is effective in producing results but not cost-effective for
widespread adoption. Drawing from our previous research in
computational workflows across scientific disciplines, this paper
analyzes the tasks and overall process for designing these
workflows. We discuss software engineering methodologies and
their relevance to creating workflows as a unique kind of software
artifact. We also discuss our ongoing work to make workflow
applications more cost effective and lower the barriers for
widespread adoption of workflow technologies.

Categories and Subject Descriptors
C. Computer systems organization, D.2 Software engineering,
D.2.10 Design.

General Terms
Design, Performance, Human Factors

Keywords
Scientific workflows, computational workflows, software design,
workflow design, workflow systems

1. INTRODUCTION
Workflows have recently emerged as an effective paradigm to
manage large-scope terascale scientific analyses and are a crucial
technology to scale up to petascale levels [1, 2]. Existing
workflow systems [3, 4, 5] have been demonstrated in a variety of

scientific applications where workflow creation draws from
catalogs of hundreds of distributed software components and data
sources, where the generation of workflows of thousands of
interrelated computing processes is largely automated, and where
the execution of workflows takes place on high-end computing
resources and often spans several months.

The focus of our work and of this paper is on computational
workflows [7]. Computational workflows are composed of
portable codes that can be submitted for execution to several
alternative execution resources (ranging from single-host to
cluster platforms), process large-scale datasets, and can be easily
restructured to exploit parallel data processing. In contrast, other
applications use service-based workflows that are assembled from
existing services [4, 5] that are often managed by third parties.
Our group has worked with a number of scientific communities to
develop workflows for a number of large-scale software systems:
astronomy, earthquake science, gravitational-wave physics,
neuroscience, data mining, natural language processing, and
others [3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Our Wings/Pegasus
workflow system can automate some aspects of workflow
generation and execution and can also assist users in workflow
creation and validation.

Creating these workflow applications is a complex and costly
process in itself. They mobilize entire research communities to
design these complex applications in collaborative efforts
spanning often several months. The workflow creation process
involves selecting appropriate data, integrating several models
into an end-to-end computation, and most likely reformatting data
between computations. Additional complexity stems from the
execution environment where the necessary resources are often
geographically distributed and data of interest may reside on
multiple storage systems. The cost of developing a workflow
application is high and it is often only done for high payoff
scientific quests. Alas, current practice is not a recipe that is cost-
effective for even medium-payoff quests, for scaling up and
accelerating the pace of science, or to be adopted by other
disciplines that may not be able to afford making such
investments.

Therefore, in order for computational workflows to become more
commonplace in scientific practice, it is crucial to understand the
current process of creating computational workflows so it can be
improved and made more efficient. By analyzing the process, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WORKS’07, June 25, 2007, Monterey, California, USA.

Copyright 2007 ACM 978-1-59593-715-5/07/0006...$5.00.

can find opportunities to assist or automate parts of the process
that contribute to the cost of developing workflow applications.

In our work, we have found that one of the most important
questions that a prospective user community asks is what does it
take to create a workflow-based application: how is it done, and
what is the cost. We describe to them the different stages
involved in the process of designing and creating workflows,
estimate the effort and cost of each stage for their particular
application, and highlight the benefits of workflow-based
approaches that will make the investment worthy. In some cases,
the application is developed from scratch, where the design of the
workflow and the design of the scientific experiment and analysis
go hand in hand. In other cases, the starting point is an existing
body of software, often including many modules whose execution
is either orchestrated by hand or through scripting languages. In
those cases, moving to a workflow framework may have clear
benefits for reasons of scale or usability, but the cost involved
may be an obstacle to adoption. Therefore, it is important to
understand the sources of cost and investigate whether current
workflow systems can be extended to assist the process and
reduce the effort required.

This paper gives an overview of our workflow creation process
and summarizes best practices and lessons learned from our
group’s experiences over the years working with a variety of
applications and communities. We continue to improve the
process and to extend the capabilities of the workflow system as
new applications bring in new requirements. This paper should be
of interest to prospective user communities that are considering
using a workflow system for scaling up an application. It should
also be of interest to other workflow researchers that are running
into similar issues and challenges in developing a workflow
design process and cost-benefit estimates. This paper should also
be of interest to software engineers as it illustrates the distinct
process of creating workflows as a unique kind of software
artifact.

The paper begins describing our approach to workflow creation
by adding different kinds of information in successive layers,
largely automating lower-level layers while providing assistance
to users in higher-level layers that are domain-relevant. Next, we
describe the process of workflow design and the kinds of effort
involved at each step. Finally, we discuss the relationship of this
work in the context of software engineering methodologies, and
finalize with our planned future work in extending our workflow
system to support the workflow design process.

2. LAYERED WORKFLOW
DESCRIPTIONS
Representing workflows at appropriate levels of abstraction is key
to managing the complexity of creating workflows and enables
workflow systems to automate parts of the creation process and
assist with others [7, 18].
We consider four layers of workflow descriptions:

1. Workflow sketches, which are informal (and often
graphical) descriptions of computations and their dataflow.
The workflow sketch is very low cost to produce, and
provides a good description of the nature of the workflow
to be created. It is also useful as a high-level roadmap of
the work to be done.

2. Workflow templates, which are data- and execution-
independent specifications of computations. Workflow
templates identify the types of components to be invoked
and the data flow among them. The nature of the
components constrains the type of data that the workflow is
designed to process, but the specific data to be used are not
described in the template. In this sense, a workflow
template is parameterized where its variables are data
holders that will be bound to specific data in later stages of
the workflow creation process. A workflow template can
be shared and reused among users performing the same
type of analysis.

3. Workflow instances, which specify the input data needed
for an analysis in addition to the application components to
be used and the data flow among them. They are
execution-independent and still at the level of the
application domain. A workflow instance can be created
by selecting a workflow template that describes the desired
type of analysis and by binding its generic data
descriptions to specific data to be used. While a workflow
instance logically identifies the full analysis, it does not
include execution details such as the physical replicas or
locations to be used. That is, the same workflow instance
can be mapped into different executable workflows that
generate the same results but use different resources
available in alternative execution environments.

4. Executable workflows, which assign actual resources in
the execution environment to all the computations
specified in the workflow instance. Executable workflows
fully specify the resources (e.g., physical replicas, sites and
hosts, and service instances) that should be used for
execution. This mapping process can be automated and
ideally is incremental and dynamic in response to failures
and other changes in the execution environment.

Most scientific workflows are created directly at the layer of
executable workflows or workflow instances, making the creation
process highly manual and therefore costly, prone to error, and not
scalable. Workflow systems can automate the creation of
workflows at the lower layers, and can assist users with
component and data selection at domain-relevant layers [1]. The
terms “abstract workflow” and “concrete workflow” are
sometimes used to refer to a workflow instance and an executable
workflow. We do not use the terms abstract and concrete in our
work, since all our layers are abstractions of different types of
information in workflows.

Figures 1 and 2 illustrate these four layers in an image processing
workflow taken from [6], all the details and the four layers of
representations of this workflow in our workflow system are
described in [19] and are available on-line at
http://vtcpc.isi.edu/provenance/index.php/Main_Page. Figure 1(a)
shows a workflow sketch, which depicts graphically five stages of
processing. The first two stages do warp aligning and reslicing on
the initial set of images. All the images are processed through a
single step in the third stage, and then sliced and converted in the
fourth and fifth stages respectively. The workflow template
shown in Figure 1(b) is a formal model of that sketch, notice that
data collections are marked in dark overlayed rectangles and
multiple parallel computations are grouped and marked in grey
overlayed rectangles. Figure 2(a) shows the automatically
expanded workflow instance that specifies individual data
processing jobs, and 2(b) the executable workflow that includes

 (a) workflow sketch (b) workflow template

 Figure 1: In our layered workflow design approach, users design a workflow sketch and from it create a formal model of

the components and their data flow in a workflow template.

(a) workflow instance

(b) executable workflow

Figure 2: The workflow system automatically creates the workflow instance, and from that creates the executable
workflow.

automatically added data movements between catalogs and
execution sites.

The next section describes how each of these four layers of
workflow descriptions are generated at different stages of the
workflow creation process.

3. THE PROCESS OF DESIGNING
WORKFLOWS
This section describes the current process that we follow in
designing workflows. We describe each stage of the process,
discussing the best practices and lessons learned from our
experiences.

Figure 3 illustrates the overall workflow design process. It
consists of two initial steps and a non-specified number of
iterations through the rest of the steps. Typically first iterations

will provide a growing number of fully specified workflow
templates along with workflow instances, executable workflows
and information about workflow execution, while in later
iterations more abstract workflows should be produced. The
models obtained in different steps of the process would typically
evolve as iterations proceed and a better understanding of the
domain is built.

3.1 Establishing Roles
The process of computational workflow design is highly
collaborative and cross-disciplinary in nature. A typical
application may involve several dozen people including scientists,
software engineers, code developers, workflow representation
experts, and workflow execution experts. Scientists need to learn
how to cast an analysis as a workflow. Software engineers and
code developers need to learn how to turn codes into appropriate

1. ESTABLISHING ROLES
• Define scientist and engineer roles of each participant in the design process
• Define role of the system in assisting and automating various aspects of workflow creation

2. INITIAL DESIGN
• Identify codes and form workflow components
• Identify datasets and data collections
• Design of workflow sketch with directed acyclic data flow

3. FORMALIZE WORKFLOW
• Create models of codes and their execution requirements
• Create formal workflow template
• Write additional components as needed

4. METADATA CREATION
• Creation of rules for propagation of metadata from input data through each component
• Describe using metadata constraints the requirements of the template from input datasets
• Describe using metadata constraints the characteristics of final workflow data products

5. TESTING
• Verification of compliance of codes with component and metadata definitions
• Validation of models by executing workflows using small data sets
• Validation of models and workflow with known data sets and results

6. SCALING UP
• Identify bottlenecks in execution by running workflows with larger data sets
• Identify workflow strands that could process data in parallel
• Add data splitting and data merging components

7. CREATE VARIANTS
• Define new workflow templates with varying parameter values
• Define new workflow templates with alternative codes for a component
• Define semi-instantiated workflow templates by specifying default datasets

8. GENERALIZE WORKFLOW
• Define abstract classes of components
• Define workflow templates using component classes and criteria to select among specializations

Figure 3: Our Current Process of Workflow Design.

workflow components so they can be automatically and remotely
executed by the workflow system, and how to integrate them into
the end-to-end workflow. The workflow representation experts
need to learn how the application and the codes are designed to
work together. The workflow execution experts need to learn the
code execution requirements and failure conditions.
As the virtual collaboration is starting and the roles and abilities
of each participant are being dynamically established, there is a
lot of communication and concurrent design of different aspects
of the workflow, and the right information needs to be conveyed
by the appropriate parties at each point during the process.

Establishing the role and functionality of the workflow system
is perhaps the most important aspect at this stage. Because
workflows are often assembled from existing codes that
implement a portion or a simpler version of the application
envisioned, many of the functions that the workflow system can
automate were originally automated in some way in the codes and
in the scripts that glue the codes. For example, data movements,
data depositions, metadata generation, and resource assignments
for execution are all done automatically by the workflow system
that we use. These functions must be well understood so that the
codes can be turned into appropriate workflow components.

3.2 Initial Design
This stage involves identifying workflow components and data
and understanding their dependencies in the computations. A
workflow sketch is simply a diagram of the components and data
flow in the workflow. Often, domain experts create sketches that
include inadequate components for processes that are either
automatically handled by the workflow system or would not
support distributed execution appropriately. These include
components for script-based control, data movement, and data and
metadata management. For components of the workflow that will
run existing code, care must be taken to remove hard-coded
control flow through global variables and data manipulated by the
codes.

The data flow also must be expressed in the workflow, so that
components expose data passing done through local file systems
into workflow data flow.

The codes themselves have to be cleaned up so they can report
execution failures with appropriate error conditions in order for
the workflow system to handle failure situations. Many of these
issues often result from the kind of code base that is to be used for
workflow components. Scripts may have been created to integrate
running codes and manage their execution, which often lead to ad-
hoc and inflexible solutions.

This stage of the process typically involves: domain experts
(scientists), who provide the understanding of the available
components and their interactions; workflow representation
experts, who validate the workflow sketch; workflow execution
experts, who identify requirements related to the workflow
execution environment; and code developers, who modify the
available components to fulfill workflow system requirements.

3.3 Formalize Workflow
A workflow template in our approach is a formal representation of
the workflow sketch, including all the components required to
perform the computations that the workflow is intended to make.
The formal description of the workflow is built from the formal

descriptions of its components which must be obtained also at this
stage.

Although software component modeling is a hard problem, at this
point we only need a shallow model where input/output data type
constraints are represented. Those constraints serve to guarantee
the correctness of the data flow in the workflow and also allow
identifying possible gaps in that flow. The formal representation
of the components and their connections may uncover the
existence of gaps in the workflow that require new components to
be created. These initial shallow models can be further elaborated
at the next step in the workflow process for metadata creation.

The component models also include execution requirements,
including the type of architecture needed, software installations
including operating system and other software libraries, and
minimum memory required.

This process involves: domain experts (scientists) to provide
component descriptions, validate the workflow templates and
propose components to fill the gaps; workflow representation
experts to build the formal representation of the components and
of the workflow templates; and code developers to write new
components when needed.

3.4 Metadata Creation
Metadata serves different purposes in our approach. It serves to
identify datasets that can be reused from previous computations
and need not be computed again. Metadata also describes data
characteristics that allow selecting a workflow based on the
characteristics of its data products, and also let us select actual
inputs given a workflow input requirements. And, finally,
metadata represents semantic constraints between different pieces
of data used to instantiate a workflow template, such as
constraints on input a given input b, constraints on output given
input and vice versa.

The most challenging task in this process is that of eliciting
knowledge that the experts may have not ever before explicitly
stated. Scientists must provide their expertise on the problem
domain while software engineers provide their knowledge on the
semantic constraints of the component implementation, and
workflow representation experts formally represent them all. As
new workflows and new metadata are created, metadata can be
validated against the workflows obtained in previous iterations of
the workflow creation process.

3.5 Testing
In this stage every new workflow template is validated through
execution. Several workflow instances can be built from the
workflow template in order to test different aspects of the
computation.

First an instance is built using small datasets in order to test the
functionality of the workflow: every piece of code connects
properly and computes what it is supposed to. Then, several
instances, preferring again simple data sets, can be used to test
metadata constraints and validate the model of metadata
propagation defined in the previous step. Finally, the workflow is
used to solve actual problems and its performance is compared to
the results obtained by the former non workflow-based application
or by other means. In this stage, failure conditions of the code are
detected and refined.

The testing stage can benefit from the existence of benchmark
data sets built to reflect different aspects of the problem domain,
as identified by the scientists, and special cases of the algorithms
used by the components, as defined by the software engineers and
code developers. Workflow representation experts validate the
models while execution experts run the workflows.

3.6 Scaling Up
Workflow templates can be further refined in order to take
advantage of the grid-enabled workflow execution system, by
identifying workflow strands that could process data in parallel.

Parallel processing through data splitting requires some
preprocessing for data chunking and post process for result
aggregation. Those processes result in an overhead not only on
execution time but also in developer time, since new code usually
has to be written for data chunking and aggregation. Even then,
certain processes may not be parallelized due to domain
constraints. Therefore, in this stage, execution experts empirically
determine workflow bottlenecks in order to identify candidates for
parallelization, which, once approved by domain experts, are
handled to software engineers for consideration and, if needed,
complemented with new components written by code developers.

We have observed in many applications that aggregation steps
may be non-trivial to implement, and may require basic research
on the domain at hand.

3.7 Create Variants
At this point in the process, when a new workflow template has

been validated and tested through several instantiations, we can
easily obtain a number of related computations by designing
simple variants of the new one. Simple variations include: typical
combinations of component parameters and partial instantiations
of workflow templates with default datasets.

Of all the possible variants that can be obtained in this way,
workflow representation experts must work in collaboration with
the scientists to identify those that are meaningful in the domain.
While in previous stages different partial models of the workflow
elements are built, the modeling goal of this step is to obtain a
model for describing the workflow as a whole. This is the model
that scientists can use to specify experiments abstracted from the
software components used to run them.

3.8 Generalize Workflows
Ideally, in the long term, as iterations proceed a better

understanding of the domain can be obtained that allows for a
more generative, instead of case-based, workflow design process.
For that, workflow representation experts identify commonalities
between workflows that can be modeled as abstract components.
Those abstractions must be complemented with refinement
criteria that let us prefer one specialization over another, given the
desired overall workflow characteristics.

This kind of reasoning requires representing connections between
the component level models and the workflow level model. Our
experience is that this knowledge is easier to acquire when a
number of workflow templates have already been designed so that
actual examples can be used both to obtain the model and validate
it.

4. COST-BENEFIT ANALYSIS OF
WORKFLOW APPROACHES

It is important to articulate up front the reasons and benefits of
using a workflow system to implement an application. Potential
benefits of adopting a workflow-based approach:

• Provide a clear separation between domain-relevant
user concerns and execution details. This allows for
automation and complex optimizations at the execution
level, which is especially relevant when the execution
environment is a complex one as is the case in grid
computing. Furthermore, this layering promotes
platform independence and facilitates portability and
understandability to domain users.

• Result validation. By starting from a well-known
workflow template, any analyses are immediately
validated because the workflow guarantees the results
were obtained using a widely-accepted analysis
methodology. The workflow template can be easily
reused with different data sets or with parameter
variants, facilitating repeatability and reproducibility of
experimental results.

• Accelerate experimental cycle. Although in the short
term adopting a workflow-based approach may require
additional effort, once applied it should avoid repetitive
work from software engineers, code developers and
execution experts.

• Document experimental results. The explicit
representation of component features, component
parameters and data sets for every experimental result
is valuable in itself as experiment documentation and
as data provenance information for experimental
results.

• Broaden participation in the experimental cycle.
Experienced scientists can focus on developing
workflow templates that capture well-accepted
methodology, specialized researchers can contribute
specific components and models, more junior students
can run variants of existing templates and still
accomplish interesting discoveries. Without a
workflow system, only a few individuals that
understand how to manage complex code bases are
able to set up and run experiments.

• Facilitate scaling up. Scaling up is accomplished
through distributed execution, parallel execution of
data sets, efficient data management services, and
seamless transition to executing with high-end
computing resources.

Once it is understood which of these benefits are important to the
application, we assess the cost of the workflow-based approach.
We have very informal ways to estimate this cost by discussing
which work needs to be done at the different stages given where
the status of the application. Therefore, understanding the overall
process and what will be required at each stage becomes very
important to a prospective user of workflow systems.

Sometimes the cost-benefit analysis does not justify the cost of
converting an existing application into a workflow. The existing
codes and scripts may be flexible enough for what is needed. The
investment of converting them to a workflow system is only worth
it if there is a clear need to exploit the advantages. By extending
current workflow systems to automate and assist in all tasks

during the workflow creation process, this cost would be greatly
reduced. This would lower this important barrier for adoption
and facilitate widespread use of workflow technologies.

5. RELATED WORK
Computational workflows are software artifacts, so the process for
designing them we have just described can be analyzed as a
methodology for software construction. From that point of view,
our methodology has some commonalities as well as distinct
requirements that are worth considering here.

In our experience, a key distinct feature of computational
workflows as software artifacts is that they are often designed as
its development is taking place because the design space is not
necessarily well understood. Multiple models may exist to
represent a particular domain problem and/or several algorithms
to solve different aspects of the same problem without a clear
understanding of their interactions. The approach that we take is
to let the user play an active role in the development process, very
much in the line of agile methodologies for software development
which are especially well-suited for building software from poorly
specified changing requirements [20]. Agile methodologies
propose close customer collaboration during the whole
development process so that requirements can be refined as
needed and prototypes promptly validated as they come out.
However, we depart from agile methodologies in that instead of
having synchronous communication with the end user, who must
stay almost full-time with the development team, we intend to
provide the users with tools for experimentation by letting them
build their own variations of the system (i.e., their own
workflows). In order to make this possible, we take a model-
based approach where users specify requirements in their own
domain terms and build a model of the workflow that is then
transformed into more detailed models and finally executed.

The Model Driven Architecture (MDA) [21] as defined by the
OMG consortium shares with the approach presented here the
interest on separating the problem domain from the execution
environment in a software system. MDA proposes the use of
different models for a software system along with a number of
transformations going from more abstract models into more
specific ones. In MDA terms, its goal is to separate business and
application logic, which tends to be more stable, from the
underlying platform technology, which may evolve more quickly
due to technological evolution. MDA is intended mainly for large-
scale distributed web-based business applications. The main
differences with our approach come from the type of models used
to describe a software system. MDA models are built with UML
and do not support complex semantic constraints other than is-a
and part-of hierarchies. On the other hand, UML models allow
expressing not only data flow aspects of an application but also
module relations and operation sequencing. Finally, while MDA
tries to model the whole software system from a very high level
down to the function level, a workflow system considers course-
grained component level descriptions of data and execution
requirements without concern for how those components are
implemented internally.

Workflow-based approaches promote reuse at different levels:
code reuse, since algorithms are componentized they can be
plugged into different workflows; design reuse, since every
workflow template provides an abstract design that can be
specialized with different components; requirements reuse, since

the formal description of the problem solved by a given workflow
documents interesting combinations of problem characteristics;
and test reuse, since workflow instantiation and execution are also
record for future use. However, as it is well documented in the
research on software reuse [22], any methodology that promotes
reuse, and somehow prioritizes a long-term view of software
development that penalizes short-term results, must take into
account not only technical but also human and organizational
factors in order to be successfully applied. We advocate what in
the software product lines literature is known as “minimally
invasive transitions” [23], trying to minimize disruption of
ongoing development efforts and to take advantage of existing
software assets to make possible an incremental adoption of the
workflow-based approach.

6. SUPPORTING WORKFLOW DESIGN
The workflow tools that our group has already developed, Wings
and Pegasus, provide effective support for many of these stages of
workflow design and execution as has been demonstrated through
its use in a variety of scientific applications. Wings is composed
of a set of tools designed to support the creation of workflow
templates and instances, which are then submitted to Pegasus to
create executable workflows. Specialized tools are used to assist
users during template creation, while general-purpose knowledge
representation tools are used for component model and metadata
creation. Wings reasoning mechanisms are responsible for
automatically building a workflow instance from a given template
and the specification of input data to be used in the computation: a
fully expanded workflow instance with the information required
by the Pegasus mapping and execution system. Pegasus is a
production-level workflow mapping and execution engine. The
Pegasus workflow mapping engine maps a given workflow to the
resources that are available at execution time, binding data
descriptions to one of many possible replicas, selecting hosts to
execute the computations, moving data to where computation will
occur, and moving data products to data repositories. Pegasus is
able to execute workflows in small, medium, and large size grid
environments such as the Teragrid and the Open Science Grid.

Our experience using Wings and Pegasus in real applications has
lead us to identify a number of bottlenecks in the process that we
consider as potential areas of future work on developing
additional support for:

• Defining the role of the workflow system.
Characterizing workflow creation as a programming
paradigm would facilitate the process, since it would
make clear the level of automation and other
capabilities provided by the workflow system. The
terms workflow, component, dataset, and code, are
often interpreted differently by prospective users.
Examples of prototypical workflows, illustrations of
bad workflow design or inappropriate uses of the
workflow system would also be useful.

• Initial design. Migrating into a principled workflow-
based approach from existing ad-hoc solutions requires
a significant effort from workflow representation and
execution experts in order to get an understanding of
the domain. Tools for workflow sketching along with
light-weight knowledge acquisition tools for rapid
acquisition of initial semi-formal models could be
useful. In addition, source code analysis tools could be

applied to reengineer existing codes and facilitate this
stage of the process.

• Component modeling. Building a semantic model of
existing software codes is an error-prone activity that
could also benefit from supporting tools. Authoring
tools should help the modeler by taking care of
partially redundant low-level details that now are
explicitly represented in general-purpose modeling
tools. Additionally, some support is also required for
checking the compliance of a given component’s code
with the model described by the developers of that
code.

• Component versioning. The evolution of the software
used to implement components and the resulting
versioning is also an issue that could be supported
better. As new versions of components appear that
supersede existing ones, workflow templates,
component models and execution products related
workflow information may require to be updated.
Automatic mechanisms to track and manage such
dependencies will be important to reduce maintenance
costs.

• Scaling up. Identifying bottlenecks in execution is now
a manual process based on exploring different
combinations of datasets and resources for workflow
instantiation and execution. The existence of high-level
analysis tools to connect execution logs to elements in
workflow templates and instances would help in this
process.

• Workflow catalogs. As workflow-based development
for a given domain expands on time and coverage we
envision the need for developing mechanisms for
managing workflow libraries. More sophisticated
mechanisms will be needed for indexing and reusing
workflows from a shared library as the number of
templates, instantiations and executions increase
though contributions from users with different roles in
distributed virtual organizations.

Supporting these aspects of the process will be important for
making workflow systems more cost-effective and have broader
adoption.

7. CONCLUSIONS
Workflow systems that support large-scale computation-intensive
scientific applications could revolutionize many sciences.
However, their widespread adoption depends on a design
methodology that offers enough support and automation to make
the process cost-effective. In this paper, we described the process
of designing workflow applications and the complexities involved
in the various stages of the process that affect the cost of
developing workflow applications. We also presented the key
benefits of using current workflow technologies for managing
computation and scale in complex applications. Finally, we
discussed some of the areas where additional tool support would
facilitate workflow design. By articulating the benefits of
workflow applications and by reducing the cost of developing
them, our goal is to make workflow technologies accessible to a
broader community of users with applications where computation
and scale are important issues.

8. ACKNOWLEDGMENTS
We would like to thank the many collaborators who made various
aspects of this work possible. We would also like to thank the
National Science Foundation for the support of this work under
grants: SCI-0455361, CNS-0509517 and CNS- 0615412.

9. REFERENCES
[1] Taylor, I., Deelman, E., Gannon, D., Shields, M., (Eds).

"Workflows for e-Science", Springer Verlag, 2006.
[2] Deelman, E., and Gil, Y. (Eds). "Final Report of the NSF

Workshop on Challenges of Scientific Workflows", National
Science Foundation, Arlington, VA, May 1-2, 2006.
http://www.isi.edu/nsf-workflows06.

[3] Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G. B., Good,
J., Laity, A., Jacob, J. C., and D. S. Katz. "Pegasus: a
Framework for Mapping Complex Scientific Workflows onto
Distributed Systems". Scientific Programming Journal, Vol
13(3), 2005.

[4] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-
Frank, E., Jones, M., Lee, E., Tao, J., and Y. Zhao.
“Scientific Workflow Management and the Kepler System”.
Concurrency and Computation: Practice and Experience,
Special Issue on Workflow in Grid Systems, Volume 18,
Issue 10, 2006.

[5] Oinn, T., Greenwood, M., Addis, M., Nedim Alpdemir, M.,
Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D.,
Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M.,
Stevens, R., Wipat A., and C. Wroe. “Taverna: Lessons in
creating a workflow environment for the life sciences.”
Concurrency and Computation: Practice and Experience,
Special Issue on Workflow in Grid Systems, Volume 18,
Issue 10, August 2006.

[6] Moreau L. and B. Ludaescher (Eds). "Special issue on the
First Provenance Challenge", Journal of Computation and
Concurrency: Practice and Experience, To appear.

[7] Deelman, E. and Y. Gil. "Managing Large-Scale Scientific
Workflows in Distributed Environments: Experiences and
Challenges", Proceedings of the Workshop on Scientific
Workflows and Business Workflow Standards in e-Science,
The Second IEEE International Conference on e-Science and
Grid Computing, Amsterdam, The Netherlands, December 4-
6, 2006.

[8] Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., and J.
Kim. “Wings for Pegasus: A Semantic Approach to Creating
Very Large Scientific Workflows,” Proceedings of the OWL:
Experiences and Directions 2006 (OWLED-06), Athens, GA,
November 10-11, 2006.

[9] Kim, J., Gil, Y., and V. Ratnakar. “Semantic Metadata
Generation for Large Scientific Workflows,” Proceedings of
the Fifth International Semantic Web Conference (ISWC-
06), Athens, GA, November 5-9, 2006.

[10] Gil, Y., Ratnakar, V., Deelman, E., Mehta, G. and J. Kim.
"Wings for Pegasus: Creating Large-Scale Scientific
Applications Using Semantic Representations of
Computational Workflows." To appear in Proceedings of the
19th Annual Conference on Innovative Applications of
Artificial Intelligence (IAAI), Vancouver, British Columbia,
Canada, July 22-26, 2007.

[11] Katz, D. S., Jacob, J. C., Berriman, B. G., Good, J., Laity, A.
C., Deelman, E., Kesselman, C., Singh, G., Su, M., Prince, T.

A. "Comparison of Two Methods for Building Astronomical
Image Mosaics on a Grid," International Conference
Workshops on Parallel Processing, 2005 (ICPP 2005),
June14-17, 2005.

[12] Maechling, P., Chalupsky, H., Dougherty, M., Deelman, E.,
Gil, Y., Gullapalli, S., Gupta, V., Kesselman, C., Kim, J.,
Mehta, Brian Mendenhall, B., Russ, T. A., Singh, G.,
Spraragen, M., Staples, G., and K. Vahi. "Simplifying
construction of complex workflows for non-expert users of
the Southern California Earthquake Center Community
Modeling Environment" SIGMOD Record 34(3): 24-30,
2005.

[13] Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal,
A., and K. Kennedy. "Task Scheduling Strategies for
Workflow-based Applications in Grids," CCGrid 2005,
Cardiff, UK, 2005.

[14] Singh, G., Kesselman, C., and E. Deelman. "Optimizing
Grid-Based Workflow Execution", Journal of Grid
Computing, Volume 3(3-4), December 2005, Pages 201-219.

[15] Singh, G., Deelman, E., Mehta, G., Vahi, K., Su, M.,
Berriman, B., Good, J., Jacob, J., Katz, D., Lazzarini, A.,
Blackburn, K., and S. Koranda. "The Pegasus Portal: Web
Based Grid Computing," The 20th Annual ACM Symposium
on Applied Computing, Santa Fe, New Mexico, March 13 -
17, 2005.

[16] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Koranda, S.,
Lazzarini, A., Mehta, G., Papa, M. A., and K. Vahi. “Pegasus
and the Pulsar Search: From Metadata to Execution on the

Grid,” Applications Grid Workshop, PPAM 2003,
Czestochowa, Poland 2003.

[17] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., and S. Koranda. “Mapping Abstract
Complex Workflows onto Grid Environments,” Journal of
Grid Computing, Vol.1, no. 1, 2003, pp. 25-39.

[18] Gil, Y. "Workflow Composition", In Workflows for e-
Science, Taylor, I., Deelman, E., Gannon, D., Shields, M.,
(Eds), Springer Verlag, 2006.

[19] Kim, J., Deelman, E., Gil, Y., Mehta, G., and V. Ratnakar.
“Provenance Trails in Wings/Pegasus”, To appear in Journal
of Computation and Concurrency: Practice and Experience,
Special issue on the First Provenance Challenge, L. Moreau
and B. Ludaescher (Eds).

[20] Mellor, S. J. “Adapting Agile Approaches to Your Project
Needs,” IEEE Software, vol. 22, no. 3, pp. 17-
20, May/June, 2005.

[21] OMG. Model Driven Architecture:
http://www.omg.org/mda/. Last visited: February/15/2007.

[22] Frakes W. and K. Kang, “Software Reuse Research: Status
and Future,” IEEE Trans. on SW Eng., vol.31, no. 7, pp. 529-
536, july 2005.

[23] Krueger, C. W., “New methods in software product line
practice,” Communications of the ACM, vol. 49, no. 12 pp.
37-40, December 2006.

