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ABSTRACT 
Computational workflows have recently emerged as an effective 
paradigm to manage large-scale distributed scientific 
computations.  Workflow systems can automate many execution-
level details and provide assistance in composing and validating 
workflows. However, there is still a significant effort involved in 
creating these workflows since they often represent collaborative 
and exploratory science experiments.  Therefore, current practice 
is effective in producing results but not cost-effective for 
widespread adoption.  Drawing from our previous research in 
computational workflows across scientific disciplines, this paper 
analyzes the tasks and overall process for designing these 
workflows.  We discuss software engineering methodologies and 
their relevance to creating workflows as a unique kind of software 
artifact.  We also discuss our ongoing work to make workflow 
applications more cost effective and lower the barriers for 
widespread adoption of workflow technologies.   

Categories and Subject Descriptors 
C. Computer systems organization, D.2 Software engineering, 
D.2.10 Design. 

General Terms 
Design, Performance, Human Factors 

Keywords 
Scientific workflows, computational workflows, software design, 
workflow design, workflow systems 

1. INTRODUCTION 
Workflows have recently emerged as an effective paradigm to 
manage large-scope terascale scientific analyses and are a crucial 
technology to scale up to petascale levels [1, 2].  Existing 
workflow systems [3, 4, 5] have been demonstrated in a variety of 

scientific applications where workflow creation draws from 
catalogs of hundreds of distributed software components and data 
sources, where the generation of workflows of thousands of 
interrelated computing processes is largely automated, and where 
the execution of workflows takes place on high-end computing 
resources and often spans several months. 

The focus of our work and of this paper is on computational 
workflows [7]. Computational workflows are composed of 
portable codes that can be submitted for execution to several 
alternative execution resources (ranging from single-host to 
cluster platforms), process large-scale datasets, and can be easily 
restructured to exploit parallel data processing. In contrast, other 
applications use service-based workflows that are assembled from 
existing services [4, 5] that are often managed by third parties. 
Our group has worked with a number of scientific communities to 
develop workflows for a number of large-scale software systems: 
astronomy, earthquake science, gravitational-wave physics, 
neuroscience, data mining, natural language processing, and 
others [3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].  Our Wings/Pegasus 
workflow system can automate some aspects of workflow 
generation and execution and can also assist users in workflow 
creation and validation. 

Creating these workflow applications is a complex and costly 
process in itself. They mobilize entire research communities to 
design these complex applications in collaborative efforts 
spanning often several months.  The workflow creation process 
involves selecting appropriate data, integrating several models 
into an end-to-end computation, and most likely reformatting data 
between computations. Additional complexity stems from the 
execution environment where the necessary resources are often 
geographically distributed and data of interest may reside on 
multiple storage systems. The cost of developing a workflow 
application is high and it is often only done for high payoff 
scientific quests.  Alas, current practice is not a recipe that is cost-
effective for even medium-payoff quests, for scaling up and 
accelerating the pace of science, or to be adopted by other 
disciplines that may not be able to afford making such 
investments. 

Therefore, in order for computational workflows to become more 
commonplace in scientific practice, it is crucial to understand the 
current process of creating computational workflows so it can be 
improved and made more efficient.  By analyzing the process, we 
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can find opportunities to assist or automate parts of the process 
that contribute to the cost of developing workflow applications. 

In our work, we have found that one of the most important 
questions that a prospective user community asks is what does it 
take to create a workflow-based application:  how is it done, and 
what is the cost.  We describe to them the different stages 
involved in the process of designing and creating workflows, 
estimate the effort and cost of each stage for their particular 
application, and highlight the benefits of workflow-based 
approaches that will make the investment worthy. In some cases, 
the application is developed from scratch, where the design of the 
workflow and the design of the scientific experiment and analysis 
go hand in hand.  In other cases, the starting point is an existing 
body of software, often including many modules whose execution 
is either orchestrated by hand or through scripting languages.  In 
those cases, moving to a workflow framework may have clear 
benefits for reasons of scale or usability, but the cost involved 
may be an obstacle to adoption.  Therefore, it is important to 
understand the sources of cost and investigate whether current 
workflow systems can be extended to assist the process and 
reduce the effort required. 

This paper gives an overview of our workflow creation process 
and summarizes best practices and lessons learned from our 
group’s experiences over the years working with a variety of 
applications and communities. We continue to improve the 
process and to extend the capabilities of the workflow system as 
new applications bring in new requirements.  This paper should be 
of interest to prospective user communities that are considering 
using a workflow system for scaling up an application. It should 
also be of interest to other workflow researchers that are running 
into similar issues and challenges in developing a workflow 
design process and cost-benefit estimates.  This paper should also 
be of interest to software engineers as it illustrates the distinct 
process of creating workflows as a unique kind of software 
artifact. 

The paper begins describing our approach to workflow creation 
by adding different kinds of information in successive layers, 
largely automating lower-level layers while providing assistance 
to users in higher-level layers that are domain-relevant. Next, we 
describe the process of workflow design and the kinds of effort 
involved at each step.  Finally, we discuss the relationship of this 
work in the context of software engineering methodologies, and 
finalize with our planned future work in extending our workflow 
system to support the workflow design process. 

2. LAYERED WORKFLOW 
DESCRIPTIONS 
Representing workflows at appropriate levels of abstraction is key 
to managing the complexity of creating workflows and enables 
workflow systems to automate parts of the creation process and 
assist with others [7, 18]. 
We consider four layers of workflow descriptions:  

1. Workflow sketches, which are informal (and often 
graphical) descriptions of computations and their dataflow.  
The workflow sketch is very low cost to produce, and 
provides a good description of the nature of the workflow 
to be created.  It is also useful as a high-level roadmap of 
the work to be done. 

2. Workflow templates, which are data- and execution-
independent specifications of computations. Workflow 
templates identify the types of components to be invoked 
and the data flow among them. The nature of the 
components constrains the type of data that the workflow is 
designed to process, but the specific data to be used are not 
described in the template. In this sense, a workflow 
template is parameterized where its variables are data 
holders that will be bound to specific data in later stages of 
the workflow creation process. A workflow template can 
be shared and reused among users performing the same 
type of analysis. 

3. Workflow instances, which specify the input data needed 
for an analysis in addition to the application components to 
be used and the data flow among them. They are 
execution-independent and still at the level of the 
application domain.  A workflow instance can be created 
by selecting a workflow template that describes the desired 
type of analysis and by binding its generic data 
descriptions to specific data to be used. While a workflow 
instance logically identifies the full analysis, it does not 
include execution details such as the physical replicas or 
locations to be used. That is, the same workflow instance 
can be mapped into different executable workflows that 
generate the same results but use different resources 
available in alternative execution environments. 

4. Executable workflows, which assign actual resources in 
the execution environment to all the computations 
specified in the workflow instance. Executable workflows 
fully specify the resources (e.g., physical replicas, sites and 
hosts, and service instances) that should be used for 
execution. This mapping process can be automated and 
ideally is incremental and dynamic in response to failures 
and other changes in the execution environment.   

Most scientific workflows are created directly at the layer of 
executable workflows or workflow instances, making the creation 
process highly manual and therefore costly, prone to error, and not 
scalable.  Workflow systems can automate the creation of 
workflows at the lower layers, and can assist users with 
component and data selection at domain-relevant layers [1]. The 
terms “abstract workflow” and “concrete workflow” are 
sometimes used to refer to a workflow instance and an executable 
workflow. We do not use the terms abstract and concrete in our 
work, since all our layers are abstractions of different types of 
information in workflows. 

Figures 1 and 2 illustrate these four layers in an image processing 
workflow taken from [6], all the details and the four layers of 
representations of this workflow in our workflow system are 
described in [19] and are available on-line at 
http://vtcpc.isi.edu/provenance/index.php/Main_Page.  Figure 1(a) 
shows a workflow sketch, which depicts graphically five stages of 
processing.  The first two stages do warp aligning and reslicing on 
the initial set of images.  All the images are processed through a 
single step in the third stage, and then sliced and converted in the 
fourth and fifth stages respectively.   The workflow template 
shown in Figure 1(b) is a formal model of that sketch, notice that 
data collections are marked in dark overlayed rectangles and 
multiple parallel computations are grouped and marked in grey 
overlayed rectangles.  Figure 2(a) shows the automatically 
expanded workflow instance that specifies individual data 
processing jobs, and 2(b) the executable workflow that includes 



 

 

 
 
 (a) workflow sketch (b) workflow template 
 
 Figure 1: In our layered workflow design approach, users design a workflow sketch and from it create a formal model of 

the components and their data flow in a workflow template.   
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(b) executable workflow 
 

Figure 2: The workflow system automatically creates the workflow instance, and from that creates the executable 
workflow. 

 



automatically added data movements between catalogs and 
execution sites. 

The next section describes how each of these four layers of 
workflow descriptions are generated at different stages of the 
workflow creation process. 

3. THE PROCESS OF DESIGNING 
WORKFLOWS 
This section describes the current process that we follow in 
designing workflows.  We describe each stage of the process, 
discussing the best practices and lessons learned from our 
experiences. 

Figure 3 illustrates the overall workflow design process.  It 
consists of two initial steps and a non-specified number of 
iterations through the rest of the steps. Typically first iterations 

will provide a growing number of fully specified workflow 
templates along with workflow instances, executable workflows 
and information about workflow execution, while in later 
iterations more abstract workflows should be produced. The 
models obtained in different steps of the process would typically 
evolve as iterations proceed and a better understanding of the 
domain is built. 

3.1 Establishing Roles 
The process of computational workflow design is highly 
collaborative and cross-disciplinary in nature.  A typical 
application may involve several dozen people including scientists, 
software engineers, code developers, workflow representation 
experts, and workflow execution experts. Scientists need to learn 
how to cast an analysis as a workflow.  Software engineers and 
code developers need to learn how to turn codes into appropriate 

1. ESTABLISHING ROLES 
• Define scientist and engineer roles of each participant in the design process 
• Define role of the system in assisting and automating various aspects of workflow creation 

2. INITIAL DESIGN 
• Identify codes and form workflow components  
• Identify datasets and data collections 
• Design of workflow sketch with directed acyclic data flow 

3. FORMALIZE WORKFLOW 
• Create models of codes and their execution requirements  
• Create formal workflow template 
• Write additional components as needed 

4. METADATA CREATION 
• Creation of rules for propagation of metadata from input data through each component 
• Describe using metadata constraints the requirements of the template from input datasets  
• Describe using metadata constraints the characteristics of final workflow data products 

5. TESTING 
• Verification of compliance of codes with component and metadata definitions 
• Validation of models by executing workflows using small data sets 
• Validation of models and workflow with known data sets and results  

6. SCALING UP 
• Identify bottlenecks in execution by running workflows with larger data sets 
• Identify workflow strands that could process data in parallel 
• Add data splitting and data merging components 

7. CREATE VARIANTS 
• Define new workflow templates with varying parameter values 
• Define new workflow templates with alternative codes for a component 
• Define semi-instantiated workflow templates by specifying default datasets 

8. GENERALIZE WORKFLOW 
• Define abstract classes of components 
• Define workflow templates using component classes and criteria to select among specializations 

 

Figure 3: Our Current Process of Workflow Design. 
 



workflow components so they can be automatically and remotely 
executed by the workflow system, and how to integrate them into 
the end-to-end workflow.  The workflow representation experts 
need to learn how the application and the codes are designed to 
work together.  The workflow execution experts need to learn the 
code execution requirements and failure conditions.    
As the virtual collaboration is starting and the roles and abilities 
of each participant are being dynamically established, there is a 
lot of communication and concurrent design of different aspects 
of the workflow, and the right information needs to be conveyed 
by the appropriate parties at each point during the process. 

Establishing the role and functionality of the workflow system 
is perhaps the most important aspect at this stage.  Because 
workflows are often assembled from existing codes that 
implement a portion or a simpler version of the application 
envisioned, many of the functions that the workflow system can 
automate were originally automated in some way in the codes and 
in the scripts that glue the codes.  For example, data movements, 
data depositions, metadata generation, and resource assignments 
for execution are all done automatically by the workflow system 
that we use.  These functions must be well understood so that the 
codes can be turned into appropriate workflow components. 

3.2 Initial Design 
This stage involves identifying workflow components and data 
and understanding their dependencies in the computations. A 
workflow sketch is simply a diagram of the components and data 
flow in the workflow. Often, domain experts create sketches that 
include inadequate components for processes that are either 
automatically handled by the workflow system or would not 
support distributed execution appropriately. These include 
components for script-based control, data movement, and data and 
metadata management.  For components of the workflow that will 
run existing code, care must be taken to remove hard-coded 
control flow through global variables and data manipulated by the 
codes.   

The data flow also must be expressed in the workflow, so that 
components expose data passing done through local file systems 
into workflow data flow.   

The codes themselves have to be cleaned up so they can report 
execution failures with appropriate error conditions in order for 
the workflow system to handle failure situations.  Many of these 
issues often result from the kind of code base that is to be used for 
workflow components.  Scripts may have been created to integrate 
running codes and manage their execution, which often lead to ad-
hoc and inflexible solutions. 

This stage of the process typically involves: domain experts 
(scientists), who provide the understanding of the available 
components and their interactions; workflow representation 
experts, who validate the workflow sketch; workflow execution 
experts, who identify requirements related to the workflow 
execution environment; and code developers, who modify the 
available components to fulfill workflow system requirements. 

3.3 Formalize Workflow 
A workflow template in our approach is a formal representation of 
the workflow sketch, including all the components required to 
perform the computations that the workflow is intended to make. 
The formal description of the workflow is built from the formal 

descriptions of its components which must be obtained also at this 
stage. 

Although software component modeling is a hard problem, at this 
point we only need a shallow model where input/output data type 
constraints are represented. Those constraints serve to guarantee 
the correctness of the data flow in the workflow and also allow 
identifying possible gaps in that flow. The formal representation 
of the components and their connections may uncover the 
existence of gaps in the workflow that require new components to 
be created.  These initial shallow models can be further elaborated 
at the next step in the workflow process for metadata creation.   

The component models also include execution requirements, 
including the type of architecture needed, software installations 
including operating system and other software libraries, and 
minimum memory required. 

This process involves: domain experts (scientists) to provide 
component descriptions, validate the workflow templates and 
propose components to fill the gaps; workflow representation 
experts to build the formal representation of the components and 
of the workflow templates; and code developers to write new 
components when needed. 

3.4 Metadata Creation 
Metadata serves different purposes in our approach. It serves to 
identify datasets that can be reused from previous computations 
and need not be computed again. Metadata also describes data 
characteristics that allow selecting a workflow based on the 
characteristics of its data products, and also let us select actual 
inputs given a workflow input requirements. And, finally, 
metadata represents semantic constraints between different pieces 
of data used to instantiate a workflow template, such as 
constraints on input a given input b, constraints on output given 
input and vice versa. 

The most challenging task in this process is that of eliciting 
knowledge that the experts may have not ever before explicitly 
stated. Scientists must provide their expertise on the problem 
domain while software engineers provide their knowledge on the 
semantic constraints of the component implementation, and 
workflow representation experts formally represent them all. As 
new workflows and new metadata are created, metadata can be 
validated against the workflows obtained in previous iterations of 
the workflow creation process. 

3.5 Testing 
In this stage every new workflow template is validated through 
execution. Several workflow instances can be built from the 
workflow template in order to test different aspects of the 
computation.  

First an instance is built using small datasets in order to test the 
functionality of the workflow: every piece of code connects 
properly and computes what it is supposed to. Then, several 
instances, preferring again simple data sets, can be used to test 
metadata constraints and validate the model of metadata 
propagation defined in the previous step. Finally, the workflow is 
used to solve actual problems and its performance is compared to 
the results obtained by the former non workflow-based application 
or by other means. In this stage, failure conditions of the code are 
detected and refined. 



The testing stage can benefit from the existence of benchmark 
data sets built to reflect different aspects of the problem domain, 
as identified by the scientists, and special cases of the algorithms 
used by the components, as defined by the software engineers and 
code developers. Workflow representation experts validate the 
models while execution experts run the workflows. 

3.6 Scaling Up 
Workflow templates can be further refined in order to take 
advantage of the grid-enabled workflow execution system, by 
identifying workflow strands that could process data in parallel.  

Parallel processing through data splitting requires some 
preprocessing for data chunking and post process for result 
aggregation. Those processes result in an overhead not only on 
execution time but also in developer time, since new code usually 
has to be written for data chunking and aggregation. Even then, 
certain processes may not be parallelized due to domain 
constraints. Therefore, in this stage, execution experts empirically 
determine workflow bottlenecks in order to identify candidates for 
parallelization, which, once approved by domain experts, are 
handled to software engineers for consideration and, if needed, 
complemented with new components written by code developers. 

We have observed in many applications that aggregation steps 
may be non-trivial to implement, and may require basic research 
on the domain at hand. 

3.7 Create Variants 
At this point in the process, when a new workflow template has 

been validated and tested through several instantiations, we can 
easily obtain a number of related computations by designing 
simple variants of the new one. Simple variations include: typical 
combinations of component parameters and partial instantiations 
of workflow templates with default datasets.  

Of all the possible variants that can be obtained in this way, 
workflow representation experts must work in collaboration with 
the scientists to identify those that are meaningful in the domain. 
While in previous stages different partial models of the workflow 
elements are built, the modeling goal of this step is to obtain a 
model for describing the workflow as a whole. This is the model 
that scientists can use to specify experiments abstracted from the 
software components used to run them. 

3.8 Generalize Workflows 
Ideally, in the long term, as iterations proceed a better 

understanding of the domain can be obtained that allows for a 
more generative, instead of case-based, workflow design process. 
For that, workflow representation experts identify commonalities 
between workflows that can be modeled as abstract components. 
Those abstractions must be complemented with refinement 
criteria that let us prefer one specialization over another, given the 
desired overall workflow characteristics.  

This kind of reasoning requires representing connections between 
the component level models and the workflow level model. Our 
experience is that this knowledge is easier to acquire when a 
number of workflow templates have already been designed so that 
actual examples can be used both to obtain the model and validate 
it. 

4. COST-BENEFIT ANALYSIS OF 
WORKFLOW APPROACHES 

It is important to articulate up front the reasons and benefits of 
using a workflow system to implement an application. Potential 
benefits of adopting a workflow-based approach:  

• Provide a clear separation between domain-relevant 
user concerns and execution details. This allows for 
automation and complex optimizations at the execution 
level, which is especially relevant when the execution 
environment is a complex one as is the case in grid 
computing. Furthermore, this layering promotes 
platform independence and facilitates portability and 
understandability to domain users. 

• Result validation. By starting from a well-known 
workflow template, any analyses are immediately 
validated because the workflow guarantees the results 
were obtained using a widely-accepted analysis 
methodology. The workflow template can be easily 
reused with different data sets or with parameter 
variants, facilitating repeatability and reproducibility of 
experimental results. 

• Accelerate experimental cycle. Although in the short 
term adopting a workflow-based approach may require 
additional effort, once applied it should avoid repetitive 
work from software engineers, code developers and 
execution experts.  

• Document experimental results. The explicit 
representation of component features, component 
parameters and data sets for every experimental result 
is valuable in itself as experiment documentation and 
as data provenance information for experimental 
results. 

• Broaden participation in the experimental cycle. 
Experienced scientists can focus on developing 
workflow templates that capture well-accepted 
methodology, specialized researchers can contribute 
specific components and models, more junior students 
can run variants of existing templates and still 
accomplish interesting discoveries. Without a 
workflow system, only a few individuals that 
understand how to manage complex code bases are 
able to set up and run experiments. 

• Facilitate scaling up.  Scaling up is accomplished 
through distributed execution, parallel execution of 
data sets, efficient data management services, and 
seamless transition to executing with high-end 
computing resources. 

Once it is understood which of these benefits are important to the 
application, we assess the cost of the workflow-based approach.  
We have very informal ways to estimate this cost by discussing 
which work needs to be done at the different stages given where 
the status of the application. Therefore, understanding the overall 
process and what will be required at each stage becomes very 
important to a prospective user of workflow systems. 

Sometimes the cost-benefit analysis does not justify the cost of 
converting an existing application into a workflow. The existing 
codes and scripts may be flexible enough for what is needed. The 
investment of converting them to a workflow system is only worth 
it if there is a clear need to exploit the advantages. By extending 
current workflow systems to automate and assist in all tasks 



during the workflow creation process, this cost would be greatly 
reduced.   This would lower this important barrier for adoption 
and facilitate widespread use of workflow technologies. 

5. RELATED WORK 
Computational workflows are software artifacts, so the process for 
designing them we have just described can be analyzed as a 
methodology for software construction. From that point of view, 
our methodology has some commonalities as well as distinct 
requirements that are worth considering here. 

In our experience, a key distinct feature of computational 
workflows as software artifacts is that they are often designed as 
its development is taking place because the design space is not 
necessarily well understood. Multiple models may exist to 
represent a particular domain problem and/or several algorithms 
to solve different aspects of the same problem without a clear 
understanding of their interactions. The approach that we take is 
to let the user play an active role in the development process, very 
much in the line of agile methodologies for software development 
which are especially well-suited for building software from poorly 
specified changing requirements [20]. Agile methodologies 
propose close customer collaboration during the whole 
development process so that requirements can be refined as 
needed and prototypes promptly validated as they come out. 
However, we depart from agile methodologies in that instead of 
having synchronous communication with the end user, who must 
stay almost full-time with the development team, we intend to 
provide the users with tools for experimentation by letting them 
build their own variations of the system (i.e., their own 
workflows).  In order to make this possible, we take a model-
based approach where users specify requirements in their own 
domain terms and build a model of the workflow that is then 
transformed into more detailed models and finally executed. 

The Model Driven Architecture (MDA) [21] as defined by the 
OMG consortium shares with the approach presented here the 
interest on separating the problem domain from the execution 
environment in a software system. MDA proposes the use of 
different models for a software system along with a number of 
transformations going from more abstract models into more 
specific ones. In MDA terms, its goal is to separate business and 
application logic, which tends to be more stable, from the 
underlying platform technology, which may evolve more quickly 
due to technological evolution. MDA is intended mainly for large-
scale distributed web-based business applications. The main 
differences with our approach come from the type of models used 
to describe a software system. MDA models are built with UML 
and do not support complex semantic constraints other than is-a 
and part-of hierarchies. On the other hand, UML models allow 
expressing not only data flow aspects of an application but also 
module relations and operation sequencing. Finally, while MDA 
tries to model the whole software system from a very high level 
down to the function level, a workflow system considers course-
grained component level descriptions of data and execution 
requirements without concern for how those components are 
implemented internally. 

Workflow-based approaches promote reuse at different levels: 
code reuse, since algorithms are componentized they can be 
plugged into different workflows; design reuse, since every 
workflow template provides an abstract design that can be 
specialized with different components; requirements reuse, since 

the formal description of the problem solved by a given workflow 
documents interesting combinations of problem characteristics; 
and test reuse, since workflow instantiation and execution are also 
record for future use. However, as it is well documented in the 
research on software reuse [22], any methodology that promotes 
reuse, and somehow prioritizes a long-term view of software 
development that penalizes short-term results, must take into 
account not only technical but also human and organizational 
factors in order to be successfully applied. We advocate what in 
the software product lines literature is known as “minimally 
invasive transitions” [23], trying to minimize disruption of 
ongoing development efforts and to take advantage of existing 
software assets to make possible an incremental adoption of the 
workflow-based approach. 

6. SUPPORTING WORKFLOW DESIGN 
The workflow tools that our group has already developed, Wings 
and Pegasus, provide effective support for many of these stages of 
workflow design and execution as has been demonstrated through 
its use in a variety of scientific applications. Wings is composed 
of a set of tools designed to support the creation of workflow 
templates and instances, which are then submitted to Pegasus to 
create executable workflows. Specialized tools are used to assist 
users during template creation, while general-purpose knowledge 
representation tools are used for component model and metadata 
creation. Wings reasoning mechanisms are responsible for 
automatically building a workflow instance from a given template 
and the specification of input data to be used in the computation: a 
fully expanded workflow instance with the information required 
by the Pegasus mapping and execution system. Pegasus is a 
production-level workflow mapping and execution engine. The 
Pegasus workflow mapping engine maps a given workflow to the 
resources that are available at execution time, binding data 
descriptions to one of many possible replicas, selecting hosts to 
execute the computations, moving data to where computation will 
occur, and moving data products to data repositories. Pegasus is 
able to execute workflows in small, medium, and large size grid 
environments such as the Teragrid and the Open Science Grid. 

Our experience using Wings and Pegasus in real applications has 
lead us to identify a number of bottlenecks in the process that we 
consider as potential areas of future work on developing 
additional support for: 

• Defining the role of the workflow system. 
Characterizing workflow creation as a programming 
paradigm would facilitate the process, since it would 
make clear the level of automation and other 
capabilities provided by the workflow system.  The 
terms workflow, component, dataset, and code, are 
often interpreted differently by prospective users. 
Examples of prototypical workflows, illustrations of 
bad workflow design or inappropriate uses of the 
workflow system would also be useful. 

• Initial design. Migrating into a principled workflow-
based approach from existing ad-hoc solutions requires 
a significant effort from workflow representation and 
execution experts in order to get an understanding of 
the domain. Tools for workflow sketching along with 
light-weight knowledge acquisition tools for rapid 
acquisition of initial semi-formal models could be 
useful. In addition, source code analysis tools could be 



applied to reengineer existing codes and facilitate this 
stage of the process.  

• Component modeling. Building a semantic model of 
existing software codes is an error-prone activity that 
could also benefit from supporting tools. Authoring 
tools should help the modeler by taking care of 
partially redundant low-level details that now are 
explicitly represented in general-purpose modeling 
tools. Additionally, some support is also required for 
checking the compliance of a given component’s code 
with the model described by the developers of that 
code.  

• Component versioning. The evolution of the software 
used to implement components and the resulting 
versioning is also an issue that could be supported 
better. As new versions of components appear that 
supersede existing ones, workflow templates, 
component models and execution products related 
workflow information may require to be updated. 
Automatic mechanisms to track and manage such 
dependencies will be important to reduce maintenance 
costs. 

• Scaling up. Identifying bottlenecks in execution is now 
a manual process based on exploring different 
combinations of datasets and resources for workflow 
instantiation and execution. The existence of high-level 
analysis tools to connect execution logs to elements in 
workflow templates and instances would help in this 
process. 

• Workflow catalogs. As workflow-based development 
for a given domain expands on time and coverage we 
envision the need for developing mechanisms for 
managing workflow libraries. More sophisticated 
mechanisms will be needed for indexing and reusing 
workflows from a shared library as the number of 
templates, instantiations and executions increase 
though contributions from users with different roles in 
distributed virtual organizations. 

Supporting these aspects of the process will be important for 
making workflow systems more cost-effective and have broader 
adoption. 

7. CONCLUSIONS 
Workflow systems that support large-scale computation-intensive 
scientific applications could revolutionize many sciences.  
However, their widespread adoption depends on a design 
methodology that offers enough support and automation to make 
the process cost-effective. In this paper, we described the process 
of designing workflow applications and the complexities involved 
in the various stages of the process that affect the cost of 
developing workflow applications.  We also presented the key 
benefits of using current workflow technologies for managing 
computation and scale in complex applications.  Finally, we 
discussed some of the areas where additional tool support would 
facilitate workflow design. By articulating the benefits of 
workflow applications and by reducing the cost of developing 
them, our goal is to make workflow technologies accessible to a 
broader community of users with applications where computation 
and scale are important issues. 
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